PROGRAMMERS NOTEBOOK

JAVASCRIPT TUTORIAL
The example below shows how to use JavaScript to write text on a web page:

	<html>
<body>
<script type="text/javascript">
document.write("Hello World!");
</script>
</body>
</html>

The document.write command is a standard JavaScript command for writing output to a page.

Can also add HTML Tags

	<html>
<body>
<script type="text/javascript">
document.write("<h1>Hello World!</h1>");
</script>
</body>
</html>

Scripts in <head>
Scripts to be executed when they are called, or when an event is triggered, are placed in functions.

It is a good practice to put all your functions in the head section, this way they are all in one place and do not interfere with page content

	<html>
<head>
<script type="text/javascript">
function message()
{
alert("This alert box was called with the onload event");
}
</script>
</head>

<body onload="message()">
</body>
</html>

Scripts in <body>
Scripts placed in the body section are often used to display page content while the page loads.

	<html>
<head>
<script type="text/javascript">
function message()
{
alert("This alert box was called with the onload event");
}
</script>
</head>

<body onload="message()">
<script type="text/javascript">
document.write("This message is written by JavaScript");
</script>
</body>

</html>

Using an External JavaScript
JavaScript can also be placed in external files.

External JavaScript files often contains code to be used on several different web pages.

External JavaScript files have the file extension .js.

Note: External script cannot contain the <script></script> tags!

To use an external script, point to the .js file in the "src" attribute of the <script> tag:

	<html>
<head>
<script type="text/javascript" src="xxx.js"></script>
</head>
<body>
</body>
</html>

JavaScript is Case Sensitive
Unlike HTML, JavaScript is case sensitive - therefore watch your capitalization closely when you write JavaScript statements, create or call variables, objects and functions.

JavaScript Statements
A JavaScript statement is a command to a browser. The purpose of the command is to tell the browser what to do.

This JavaScript statement tells the browser to write "Hello Dolly" to the web page:

	document.write("Hello Dolly");

The semicolon is optional (according to the JavaScript standard), and the browser is supposed to interpret the end of the line as the end of the statement. Because of this you will often see examples without the semicolon at the end.

Note: Using semicolons makes it possible to write multiple statements on one line.

JavaScript Blocks
JavaScript statements can be grouped together in blocks.

Blocks start with a left curly bracket {, and ends with a right curly bracket }.

The purpose of a block is to make the sequence of statements execute together.

This example will write a heading and two paragraphs to a web page:

	<script type="text/javascript">
{
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
}
</script>

JavaScript Comments
Comments can be added to explain the JavaScript, or to make the code more readable.

Single line comments start with //.

	<script type="text/javascript">
// Write a heading
document.write("<h1>This is a heading</h1>");
// Write two paragraphs:
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
</script>

JavaScript Multi-Line Comments
Multi line comments start with /* and end with */.

	<script type="text/javascript">
/*
The code below will write
one heading and two paragraphs
*/
document.write("<h1>This is a heading</h1>");
document.write("<p>This is a paragraph.</p>");
document.write("<p>This is another paragraph.</p>");
</script>

JavaScript Variables
As with algebra, JavaScript variables are used to hold values or expressions.

A variable can have a short name, like x, or a more descriptive name, like carname.

Rules for JavaScript variable names:

· Variable names are case sensitive (y and Y are two different variables)

· Variable names must begin with a letter or the underscore character

Declaring (Creating) JavaScript Variables
Creating variables in JavaScript is most often referred to as "declaring" variables.

You can declare JavaScript variables with the var keyword:

	var x;
var carname;

After the declaration shown above, the variables are empty (they have no values yet).

However, you can also assign values to the variables when you declare them:

	var x=5;
var carname="Volvo";

Assigning Values to Undeclared JavaScript Variables
If you assign values to variables that have not yet been declared, the variables will automatically be declared.

These statements:

	x=5;
carname="Volvo";

have the same effect as:

	var x=5;
var carname="Volvo";

Redeclaring JavaScript Variables
If you redeclare a JavaScript variable, it will not lose its original value.

	var x=5;
var x;

After the execution of the statements above, the variable x will still have the value of 5. The value of x is not reset (or cleared) when you redeclare it.

JavaScript Operators
The assignment operator = is used to assign values to JavaScript variables.

The arithmetic operator + is used to add values together.

	y=5;
z=2;
x=y+z;

The value of x, after the execution of the statements above is 7.

JavaScript Arithmetic Operators
Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

	Operator
	Description
	Example
	Result

	+
	Addition
	x=y+2
	x=7
	y=5

	-
	Subtraction
	x=y-2
	x=3
	y=5

	*
	Multiplication
	x=y*2
	x=10
	y=5

	/
	Division
	x=y/2
	x=2.5
	y=5

	%
	Modulus (division remainder)
	x=y%2
	x=1
	y=5

	++
	Increment
	x=++y
	x=6
	y=6

	
	
	x=y++
	x=5
	y=6

	--
	Decrement
	x=--y
	x=4
	y=4

	
	
	x=y--
	x=5
	y=4

JavaScript Assignment Operators
Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment operators:

	Operator
	Example
	Same As
	Result

	=
	x=y
	
	x=5

	+=
	x+=y
	x=x+y
	x=15

	-=
	x-=y
	x=x-y
	x=5

	*=
	x*=y
	x=x*y
	x=50

	/=
	x/=y
	x=x/y
	x=2

	%=
	x%=y
	x=x%y
	x=0

The + Operator Used on Strings
The + operator can also be used to add string variables or text values together.

To add two or more string variables together, use the + operator.

	txt1="What a very";
txt2="nice day";
txt3=txt1+txt2;

After the execution of the statements above, the variable txt3 contains "What a verynice day".

To add a space between the two strings, insert a space into one of the strings:

	txt1="What a very ";
txt2="nice day";
txt3=txt1+txt2;

or insert a space into the expression:

	txt1="What a very";
txt2="nice day";
txt3=txt1+" "+txt2;

Comparison Operators
Comparison operators are used in logical statements to determine equality or difference between variables or values.

Given that x=5, the table below explains the comparison operators:

	Operator
	Description
	Example

	==
	is equal to
	x==8 is false

	===
	is exactly equal to (value and type)
	x===5 is true
x==="5" is false

	!=
	is not equal
	x!=8 is true

	>
	is greater than
	x>8 is false

	<
	is less than
	x<8 is true

	>=
	is greater than or equal to
	x>=8 is false

	<=
	is less than or equal to
	x<=8 is true

How Can it be Used
Comparison operators can be used in conditional statements to compare values and take action depending on the result:

	if (age<18) document.write("Too young");

You will learn more about the use of conditional statements in the next chapter of this tutorial.

Logical Operators
Logical operators are used to determine the logic between variables or values.

Given that x=6 and y=3, the table below explains the logical operators:

	Operator
	Description
	Example

	&&
	and
	(x < 10 && y > 1) is true

	||
	or
	(x==5 || y==5) is false

	!
	not
	!(x==y) is true

Conditional Operator
JavaScript also contains a conditional operator that assigns a value to a variable based on some condition.

Syntax
	variablename=(condition)?value1:value2

Example
	greeting=(visitor=="PRES")?"Dear President ":"Dear ";

If the variable visitor has the value of "PRES", then the variable greeting will be assigned the value "Dear President " else it will be assigned "Dear".

Conditional Statements
If Statement
Use the if statement to execute some code only if a specified condition is true.

Syntax
	if (condition)
 {
 code to be executed if condition is true
 }

Note that if is written in lowercase letters. Using uppercase letters (IF) will generate a JavaScript error!

	<script type="text/javascript">
//Write a "Good morning" greeting if
//the time is less than 10

var d=new Date();
var time=d.getHours();

if (time<10)
 {
 document.write("Good morning");
 }
</script>

	

If...else Statement
Use the if....else statement to execute some code if a condition is true and another code if the condition is not true.

Syntax
	if (condition)
 {
 code to be executed if condition is true
 }
else
 {
 code to be executed if condition is not true
 }

	Example
<script type="text/javascript">
//If the time is less than 10, you will get a "Good morning" greeting.
//Otherwise you will get a "Good day" greeting.

var d = new Date();
var time = d.getHours();

if (time < 10)
 {
 document.write("Good morning!");
 }
else
 {
 document.write("Good day!");
 }
</script>

If...else if...else Statement
Use the if....else if...else statement to select one of several blocks of code to be executed.

Syntax
	if (condition1)
 {
 code to be executed if condition1 is true
 }
else if (condition2)
 {
 code to be executed if condition2 is true
 }
else
 {
 code to be executed if condition1 and condition2 are not true
 }

	<script type="text/javascript">
var d = new Date()
var time = d.getHours()
if (time<10)
 {
 document.write("Good morning");
 }
else if (time>10 && time<16)
 {
 document.write("Good day");
 }
else
 {
 document.write("Hello World!");
 }
</script>

	

The JavaScript Switch Statement
Use the switch statement to select one of many blocks of code to be executed.

Syntax
	switch(n)
{
case 1:
 execute code block 1
 break;
case 2:
 execute code block 2
 break;
default:
 code to be executed if n is different from case 1 and 2
}

This is how it works: First we have a single expression n (most often a variable), that is evaluated once. The value of the expression is then compared with the values for each case in the structure. If there is a match, the block of code associated with that case is executed. Use break to prevent the code from running into the next case automatically.

	Example
<script type="text/javascript">
//You will receive a different greeting based
//on what day it is. Note that Sunday=0,
//Monday=1, Tuesday=2, etc.

var d=new Date();
var theDay=d.getDay();
switch (theDay)
{
case 5:
 document.write("Finally Friday");
 break;
case 6:
 document.write("Super Saturday");
 break;
case 0:
 document.write("Sleepy Sunday");
 break;
default:
 document.write("I'm looking forward to this weekend!");
}
</script>

JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt box.

Alert Box
An alert box is often used if you want to make sure information comes through to the user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax
	alert("sometext");

	Example
<html>
<head>
<script type="text/javascript">
function show_alert()
{
alert("I am an alert box!");
}
</script>
</head>
<body>

<input type="button" onclick="show_alert()" value="Show alert box" />

</body>
</html>

Confirm Box
A confirm box is often used if you want the user to verify or accept something.

When a confirm box pops up, the user will have to click either "OK" or "Cancel" to proceed.

If the user clicks "OK", the box returns true. If the user clicks "Cancel", the box returns false.

Syntax
	confirm("sometext");

	Example
<html>
<head>
<script type="text/javascript">
function show_confirm()
{
var r=confirm("Press a button");
if (r==true)
 {
 alert("You pressed OK!");
 }
else
 {
 alert("You pressed Cancel!");
 }
}
</script>
</head>
<body>

<input type="button" onclick="show_confirm()" value="Show confirm box" />

</body>
</html>

Prompt Box
A prompt box is often used if you want the user to input a value before entering a page.

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to proceed after entering an input value.

If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the box returns null.

Syntax
	prompt("sometext","defaultvalue");

	Example
<html>
<head>
<script type="text/javascript">
function show_prompt()
{
var name=prompt("Please enter your name","Harry Potter");
if (name!=null && name!="")
 {
 document.write("Hello " + name + "! How are you today?");
 }
}
</script>
</head>
<body>

<input type="button" onclick="show_prompt()" value="Show prompt box" />

</body>
</html>

JavaScript Functions
To keep the browser from executing a script when the page loads, you can put your script into a function.

A function contains code that will be executed by an event or by a call to the function.

You may call a function from anywhere within a page (or even from other pages if the function is embedded in an external .js file).

Functions can be defined both in the <head> and in the <body> section of a document. However, to assure that a function is read/loaded by the browser before it is called, it could be wise to put functions in the <head> section.

How to Define a Function
Syntax

	function functionname(var1,var2,...,varX)
{
some code
}

The parameters var1, var2, etc. are variables or values passed into the function. The { and the } defines the start and end of the function.

Note: A function with no parameters must include the parentheses () after the function name.

Note: Do not forget about the importance of capitals in JavaScript! The word function must be written in lowercase letters, otherwise a JavaScript error occurs! Also note that you must call a function with the exact same capitals as in the function name.

JavaScript Function Example
	Example
<html>
<head>
<script type="text/javascript">
function displaymessage()
{
alert("Hello World!");
}
</script>
</head>

<body>
<form>
<input type="button" value="Click me!" onclick="displaymessage()" />
</form>
</body>
</html>

The return Statement
The return statement is used to specify the value that is returned from the function.

So, functions that are going to return a value must use the return statement.

The example below returns the product of two numbers (a and b):

	Example
<html>
<head>
<script type="text/javascript">
function product(a,b)
{
return a*b;
}
</script>
</head>

<body>
<script type="text/javascript">
document.write(product(4,3));
</script>

</body>
</html>

JavaScript Loops
Often when you write code, you want the same block of code to run over and over again in a row. Instead of adding several almost equal lines in a script we can use loops to perform a task like this.

In JavaScript, there are two different kind of loops:

· for - loops through a block of code a specified number of times

· while - loops through a block of code while a specified condition is true

The for Loop
The for loop is used when you know in advance how many times the script should run.

Syntax
	for (variable=startvalue;variable<=endvalue;variable=variable+increment)
{
code to be executed
}

Example
The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less than, or equal to 5. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any comparing statement.

	Example
<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=5;i++)
{
document.write("The number is " + i);
document.write("
");
}
</script>
</body>

The while Loop
The while loop loops through a block of code while a specified condition is true.

Syntax
	while (variable<=endvalue)
 {
 code to be executed
 }

Note: The <= could be any comparing operator.

Example
The example below defines a loop that starts with i=0. The loop will continue to run as long as i is less than, or equal to 5. i will increase by 1 each time the loop runs:

	Example
<html>
<body>
<script type="text/javascript">
var i=0;
while (i<=5)
 {
 document.write("The number is " + i);
 document.write("
");
 i++;
 }
</script>
</body>
</html>

The do...while Loop
The do...while loop is a variant of the while loop. This loop will execute the block of code ONCE, and then it will repeat the loop as long as the specified condition is true.

Syntax
	do
 {
 code to be executed
 }
while (variable<=endvalue);

Example
The example below uses a do...while loop. The do...while loop will always be executed at least once, even if the condition is false, because the statements are executed before the condition is tested:

	Example
<html>
<body>
<script type="text/javascript">
var i=0;
do
 {
 document.write("The number is " + i);
 document.write("
");
 i++;
 }
while (i<=5);
</script>

The break Statement
The break statement will break the loop and continue executing the code that follows after the loop (if any).

	Example
<html>
<body>
<script type="text/javascript">
var i=0;
for (i=0;i<=10;i++)
 {
 if (i==3)
 {
 break;
 }
 document.write("The number is " + i);
 document.write("
");
 }
</script>
</body>
</html>

The continue Statement
The continue statement will break the current loop and continue with the next value.

	Example
<html>
<body>
<script type="text/javascript">
var i=0
for (i=0;i<=10;i++)
 {
 if (i==3)
 {
 continue;
 }
 document.write("The number is " + i);
 document.write("
");
 }
</script>
</body>
</html>

JavaScript For...In Statement
The for...in statement loops through the elements of an array or through the properties of an object.

Syntax
	for (variable in object)
 {
 code to be executed
 }

Note: The code in the body of the for...in loop is executed once for each element/property.

Note: The variable argument can be a named variable, an array element, or a property of an object.

Example
Use the for...in statement to loop through an array:

	Example
<html>
<body>

<script type="text/javascript">
var x;
var mycars = new Array();
mycars[0] = "Saab";
mycars[1] = "Volvo";
mycars[2] = "BMW";

for (x in mycars)
 {
 document.write(mycars[x] + "
");
 }
</script>

</body>
</html>

Events
By using JavaScript, we have the ability to create dynamic web pages. Events are actions that can be detected by JavaScript.

Every element on a web page has certain events which can trigger a JavaScript. For example, we can use the onClick event of a button element to indicate that a function will run when a user clicks on the button. We define the events in the HTML tags.

Examples of events:

· A mouse click

· A web page or an image loading

· Mousing over a hot spot on the web page

· Selecting an input field in an HTML form

· Submitting an HTML form

· A keystroke

Note: Events are normally used in combination with functions, and the function will not be executed before the event occurs!

For a complete reference of the events recognized by JavaScript, go to our complete JavaScript reference.

onLoad and onUnload
The onLoad and onUnload events are triggered when the user enters or leaves the page.

The onLoad event is often used to check the visitor's browser type and browser version, and load the proper version of the web page based on the information.

Both the onLoad and onUnload events are also often used to deal with cookies that should be set when a user enters or leaves a page. For example, you could have a popup asking for the user's name upon his first arrival to your page. The name is then stored in a cookie. Next time the visitor arrives at your page, you could have another popup saying something like: "Welcome John Doe!".

onFocus, onBlur and onChange
The onFocus, onBlur and onChange events are often used in combination with validation of form fields.

Below is an example of how to use the onChange event. The checkEmail() function will be called whenever the user changes the content of the field:

	<input type="text" size="30" id="email" onchange="checkEmail()">

onSubmit
The onSubmit event is used to validate ALL form fields before submitting it.

Below is an example of how to use the onSubmit event. The checkForm() function will be called when the user clicks the submit button in the form. If the field values are not accepted, the submit should be cancelled. The function checkForm() returns either true or false. If it returns true the form will be submitted, otherwise the submit will be cancelled:

	<form method="post" action="xxx.htm" onsubmit="return checkForm()">

onMouseOver and onMouseOut
onMouseOver and onMouseOut are often used to create "animated" buttons.

Below is an example of an onMouseOver event. An alert box appears when an onMouseOver event is detected:

	

The try...catch Statement
The try...catch statement allows you to test a block of code for errors. The try block contains the code to be run, and the catch block contains the code to be executed if an error occurs.

Syntax
	try
 {
 //Run some code here
 }
catch(err)
 {
 //Handle errors here
 }

Note that try...catch is written in lowercase letters. Using uppercase letters will generate a JavaScript error!

Examples
The example below is supposed to alert "Welcome guest!" when the button is clicked. However, there's a typo in the message() function. alert() is misspelled as adddlert(). A JavaScript error occurs. The catch block catches the error and executes a custom code to handle it. The code displays a custom error message informing the user what happened:

	Example
<html>
<head>
<script type="text/javascript">
var txt="";
function message()
{
try
 {
 adddlert("Welcome guest!");
 }
catch(err)
 {
 txt="There was an error on this page.\n\n";
 txt+="Error description: " + err.description + "\n\n";
 txt+="Click OK to continue.\n\n";
 alert(txt);
 }
}
</script>
</head>

<body>
<input type="button" value="View message" onclick="message()" />
</body>

</html>

The Throw Statement
The throw statement allows you to create an exception. If you use this statement together with the try...catch statement, you can control program flow and generate accurate error messages.

Syntax
	throw exception

The exception can be a string, integer, Boolean or an object.

Note that throw is written in lowercase letters. Using uppercase letters will generate a JavaScript error!

Example
The example below determines the value of a variable called x. If the value of x is higher than 10, lower than 0, or not a number, we are going to throw an error. The error is then caught by the catch argument and the proper error message is displayed:

	Example
<html>
<body>
<script type="text/javascript">
var x=prompt("Enter a number between 0 and 10:","");
try
 {
 if(x>10)
 {
 throw "Err1";
 }
 else if(x<0)
 {
 throw "Err2";
 }
 else if(isNaN(x))
 {
 throw "Err3";
 }
 }
catch(er)
 {
 if(er=="Err1")
 {
 alert("Error! The value is too high");
 }
 if(er=="Err2")
 {
 alert("Error! The value is too low");
 }
 if(er=="Err3")
 {
 alert("Error! The value is not a number");
 }
 }
</script>
</body>
</html>

Insert Special Characters
The backslash (\) is used to insert apostrophes, new lines, quotes, and other special characters into a text string.

Look at the following JavaScript code:

	var txt="We are the so-called "Vikings" from the north.";
document.write(txt);

In JavaScript, a string is started and stopped with either single or double quotes. This means that the string above will be chopped to: We are the so-called

To solve this problem, you must place a backslash (\) before each double quote in "Viking". This turns each double quote into a string literal:

	var txt="We are the so-called \"Vikings\" from the north.";
document.write(txt);

JavaScript will now output the proper text string: We are the so-called "Vikings" from the north.

The table below lists other special characters that can be added to a text string with the backslash sign:

	Code
	Outputs

	\'
	single quote

	\"
	double quote

	\\
	backslash

	\n
	new line

	\r
	carriage return

	\t
	tab

	\b
	backspace

	\f
	form feed

Object Oriented Programming
JavaScript is an Object Oriented Programming (OOP) language. An OOP language allows you to define your own objects and make your own variable types.

Note that an object is just a special kind of data. An object has properties and methods.

Properties
Properties are the values associated with an object.

In the following example we are using the length property of the String object to return the number of characters in a string:

	<script type="text/javascript">
var txt="Hello World!";
document.write(txt.length);
</script>

The output of the code above will be:

	12

Methods
Methods are the actions that can be performed on objects.

In the following example we are using the toUpperCase() method of the String object to display a text in uppercase letters:

	<script type="text/javascript">
var str="Hello world!";
document.write(str.toUpperCase());
</script>

The output of the code above will be:

	HELLO WORLD!

Create a Date Object
The Date object is used to work with dates and times.

Date objects are created with the Date() constructor.

There are four ways of instantiating a date:

	new Date() // current date and time
new Date(milliseconds) //milliseconds since 1970/01/01
new Date(dateString)
new Date(year, month, day, hours, minutes, seconds, milliseconds)

Most parameters above are optional. Not specifying, causes 0 to be passed in.

Once a Date object is created, a number of methods allow you to operate on it. Most methods allow you to get and set the year, month, day, hour, minute, second, and milliseconds of the object, using either local time or UTC (universal, or GMT) time.

All dates are calculated in milliseconds from 01 January, 1970 00:00:00 Universal Time (UTC) with a day containing 86,400,000 milliseconds.

Some examples of instantiating a date:

	var today = new Date()
var d1 = new Date("October 13, 1975 11:13:00")
var d2 = new Date(79,5,24)
var d3 = new Date(79,5,24,11,33,0)

Set Dates
We can easily manipulate the date by using the methods available for the Date object.

In the example below we set a Date object to a specific date (14th January 2010):

	var myDate=new Date();
myDate.setFullYear(2010,0,14);

And in the following example we set a Date object to be 5 days into the future:

	var myDate=new Date();
myDate.setDate(myDate.getDate()+5);

Note: If adding five days to a date shifts the month or year, the changes are handled automatically by the Date object itself!

Compare Two Dates
The Date object is also used to compare two dates.

The following example compares today's date with the 14th January 2010:

	var myDate=new Date();
myDate.setFullYear(2010,0,14);
var today = new Date();

if (myDate>today)
 {
 alert("Today is before 14th January 2010");
 }
else
 {
 alert("Today is after 14th January 2010");
 }

What is an Array?
An array is a special variable, which can hold more than one value, at a time.

If you have a list of items (a list of car names, for example), storing the cars in single variables could look like this:

	var car1="Saab";
var car2="Volvo";
var car3="BMW";

However, what if you want to loop through the cars and find a specific one? And what if you had not 3 cars, but 300?

The best solution here is to use an array!

An array can hold all your variable values under a single name. And you can access the values by referring to the array name.

Each element in the array has its own ID so that it can be easily accessed.

Create an Array
An array can be defined in three ways.

The following code creates an Array object called myCars:

1:

	var myCars=new Array(); // regular array (add an optional integer
myCars[0]="Saab"; // argument to control array's size)
myCars[1]="Volvo";
myCars[2]="BMW";

2:

	var myCars=new Array("Saab","Volvo","BMW"); // condensed array

3:

	var myCars=["Saab","Volvo","BMW"]; // literal array

Note: If you specify numbers or true/false values inside the array then the variable type will be Number or Boolean, instead of String.

Access an Array
You can refer to a particular element in an array by referring to the name of the array and the index number. The index number starts at 0.
The following code line:

	document.write(myCars[0]);

will result in the following output:

	Saab

Modify Values in an Array
To modify a value in an existing array, just add a new value to the array with a specified index number:

	myCars[0]="Opel";

Now, the following code line:

	document.write(myCars[0]);

will result in the following output:

	Opel

Create a Boolean Object
The Boolean object represents two values: "true" or "false".

The following code creates a Boolean object called myBoolean:

	var myBoolean=new Boolean();

Note: If the Boolean object has no initial value or if it is 0, -0, null, "", false, undefined, or NaN, the object is set to false. Otherwise it is true (even with the string "false")!

All the following lines of code create Boolean objects with an initial value of false:

	var myBoolean=new Boolean();
var myBoolean=new Boolean(0);
var myBoolean=new Boolean(null);
var myBoolean=new Boolean("");
var myBoolean=new Boolean(false);
var myBoolean=new Boolean(NaN);

And all the following lines of code create Boolean objects with an initial value of true:

	var myBoolean=new Boolean(1);
var myBoolean=new Boolean(true);
var myBoolean=new Boolean("true");
var myBoolean=new Boolean("false");
var myBoolean=new Boolean("Richard");

Math Object
The Math object allows you to perform mathematical tasks.

The Math object includes several mathematical constants and methods.

Syntax for using properties/methods of Math:
	var x=Math.PI;
var y=Math.sqrt(16);

Note: Math is not a constructor. All properties and methods of Math can be called by using Math as an object without creating it.

Mathematical Constants
JavaScript provides eight mathematical constants that can be accessed from the Math object. These are: E, PI, square root of 2, square root of 1/2, natural log of 2, natural log of 10, base-2 log of E, and base-10 log of E.

You may reference these constants from your JavaScript like this:

	Math.E
Math.PI
Math.SQRT2
Math.SQRT1_2
Math.LN2
Math.LN10
Math.LOG2E
Math.LOG10E

Mathematical Methods
In addition to the mathematical constants that can be accessed from the Math object there are also several methods available.

The following example uses the round() method of the Math object to round a number to the nearest integer:

	document.write(Math.round(4.7));

The code above will result in the following output:

	5

The following example uses the random() method of the Math object to return a random number between 0 and 1:

	document.write(Math.random());

The code above can result in the following output:

	0.5395174822649662

The following example uses the floor() and random() methods of the Math object to return a random number between 0 and 10:

	document.write(Math.floor(Math.random()*11));

The code above can result in the following output:

	6

What is RegExp?
A regular expression is an object that describes a pattern of characters.

When you search in a text, you can use a pattern to describe what you are searching for.

A simple pattern can be one single character.

A more complicated pattern can consist of more characters, and can be used for parsing, format checking, substitution and more.

Regular expressions are used to perform powerful pattern-matching and "search-and-replace" functions on text.

Syntax
	var txt=new RegExp(pattern,modifiers);

or more simply:

var txt=/pattern/modifiers;

· pattern specifies the pattern of an expression

· modifiers specify if a search should be global, case-sensitive, etc.

RegExp Modifiers
Modifiers are used to perform case-insensitive and global searches.

The i modifier is used to perform case-insensitive matching.

The g modifier is used to perform a global match (find all matches rather than stopping after the first match).

	Example 1
Do a case-insensitive search for "w3schools" in a string:

var str="Visit W3Schools";
var patt1=/w3schools/i;

document.write(str.match(patt1));

</script>

The marked text below shows where the expression gets a match:

 W3Schools

test()
The test() method searches a string for a specified value, and returns true or false, depending on the result.

The following example searches a string for the character "e":

	Example
var patt1=new RegExp("e");
document.write(patt1.test("The best things in life are free"));

Since there is an "e" in the string, the output of the code above will be:

true

Browser Detection
Almost everything in this tutorial works on all JavaScript-enabled browsers. However, there are some things that just don't work on certain browsers - especially on older browsers.

Sometimes it can be useful to detect the visitor's browser, and then serve the appropriate information.

The Navigator object contains information about the visitor's browser name, version, and more.

[image: image1.png]

Note: There is no public standard that applies to the navigator object, but all major browsers support it.

The Navigator Object
The Navigator object contains all information about the visitor's browser:

	Example
<div id="example"></div>

<script type="text/javascript">
document.getElementById("example").innerHTML=
 "<p>Browser CodeName: " + navigator.appCodeName + "</p>"
+ "<p>Browser Name: " + navigator.appName + "</p>"
+ "<p>Browser Version: " + navigator.appVersion + "</p>"
+ "<p>Cookies Enabled: " + navigator.cookieEnabled + "</p>"
+ "<p>Platform: " + navigator.platform + "</p>"
+ "<p>User-agent header: " + navigator.userAgent + "</p>";
</script>

Create and Store a Cookie
In this example we will create a cookie that stores the name of a visitor. The first time a visitor arrives to the web page, he or she will be asked to fill in her/his name. The name is then stored in a cookie. The next time the visitor arrives at the same page, he or she will get welcome message.

First, we create a function that stores the name of the visitor in a cookie variable:

	function setCookie(c_name,value,exdays)
{
var exdate=new Date();
exdate.setDate(exdate.getDate() + exdays);
var c_value=escape(value) + ((exdays==null) ? "" : "; expires="+exdate.toUTCString());
document.cookie=c_name + "=" + c_value;
}

The parameters of the function above hold the name of the cookie, the value of the cookie, and the number of days until the cookie expires.

In the function above we first convert the number of days to a valid date, then we add the number of days until the cookie should expire. After that we store the cookie name, cookie value and the expiration date in the document.cookie object.

Then, we create another function that returns a specified cookie:

	function getCookie(c_name)
{
var i,x,y,ARRcookies=document.cookie.split(";");
for (i=0;i<ARRcookies.length;i++)
{
 x=ARRcookies[i].substr(0,ARRcookies[i].indexOf("="));
 y=ARRcookies[i].substr(ARRcookies[i].indexOf("=")+1);
 x=x.replace(/^\s+|\s+$/g,"");
 if (x==c_name)
 {
 return unescape(y);
 }
 }
}

The function above makes an array to retrieve cookie names and values, then it checks if the specified cookie exists, and returns the cookie value.

Last, we create the function that displays a welcome message if the cookie is set, and if the cookie is not set it will display a prompt box, asking for the name of the user, and stores the username cookie for 365 days, by calling the setCookie function:

	function checkCookie()
{
var username=getCookie("username");
 if (username!=null && username!="")
 {
 alert("Welcome again " + username);
 }
else
 {
 username=prompt("Please enter your name:","");
 if (username!=null && username!="")
 {
 setCookie("username",username,365);
 }
 }
}

All together now:

	Example
<html>
<head>
<script type="text/javascript">
function getCookie(c_name)
{
var i,x,y,ARRcookies=document.cookie.split(";");
for (i=0;i<ARRcookies.length;i++)
 {
 x=ARRcookies[i].substr(0,ARRcookies[i].indexOf("="));
 y=ARRcookies[i].substr(ARRcookies[i].indexOf("=")+1);
 x=x.replace(/^\s+|\s+$/g,"");
 if (x==c_name)
 {
 return unescape(y);
 }
 }
}

function setCookie(c_name,value,exdays)
{
var exdate=new Date();
exdate.setDate(exdate.getDate() + exdays);
var c_value=escape(value) + ((exdays==null) ? "" : "; expires="+exdate.toUTCString());
document.cookie=c_name + "=" + c_value;
}

function checkCookie()
{
var username=getCookie("username");
if (username!=null && username!="")
 {
 alert("Welcome again " + username);
 }
else
 {
 username=prompt("Please enter your name:","");
 if (username!=null && username!="")
 {
 setCookie("username",username,365);
 }
 }
}
</script>
</head>
<body onload="checkCookie()">
</body>
</html>

JavaScript Form Validation
JavaScript can be used to validate data in HTML forms before sending off the content to a server.

Form data that typically are checked by a JavaScript could be:

· has the user left required fields empty?

· has the user entered a valid e-mail address?

· has the user entered a valid date?

· has the user entered text in a numeric field?

Required Fields
The function below checks if a field has been left empty. If the field is blank, an alert box alerts a message, the function returns false, and the form will not be submitted:

	function validateForm()
{
var x=document.forms["myForm"]["fname"].value
if (x==null || x=="")
 {
 alert("First name must be filled out");
 return false;
 }
}

The function above could be called when a form is submitted:

	Example
<form name="myForm" action="demo_form.asp" onsubmit="return validateForm()" method="post">
First name: <input type="text" name="fname">
<input type="submit" value="Submit">
</form>

E-mail Validation
The function below checks if the content has the general syntax of an email.

This means that the input data must contain an @ sign and at least one dot (.). Also, the @ must not be the first character of the email address, and the last dot must be present after the @ sign, and minimum 2 characters before the end:

	function validateForm()
{
var x=document.forms["myForm"]["email"].value
var atpos=x.indexOf("@");
var dotpos=x.lastIndexOf(".");
if (atpos<1 || dotpos<atpos+2 || dotpos+2>=x.length)
 {
 alert("Not a valid e-mail address");
 return false;
 }
}

The function above could be called when a form is submitted:

	Example
<form name="myForm" action="demo_form.asp" onsubmit="return validateForm();" method="post">
Email: <input type="text" name="email">
<input type="submit" value="Submit">
</form>

JavaScript Animation
It is possible to use JavaScript to create animated images.

The trick is to let a JavaScript change between different images on different events.

In the following example we will add an image that should act as a link button on a web page. We will then add an onMouseOver event and an onMouseOut event that will run two JavaScript functions that will change between the images.

The HTML Code
The HTML code looks like this:

	
<img border="0" alt="Visit W3Schools!" src="b_pink.gif" id="b1"
onmouseOver="mouseOver()" onmouseOut="mouseOut()" />

Note that we have given the image an id, to make it possible for a JavaScript to address it later.

The onMouseOver event tells the browser that once a mouse is rolled over the image, the browser should execute a function that will replace the image with another image.

The onMouseOut event tells the browser that once a mouse is rolled away from the image, another JavaScript function should be executed. This function will insert the original image again.

The JavaScript Code
The changing between the images is done with the following JavaScript:

	<script type="text/javascript">
function mouseOver()
{
document.getElementById("b1").src ="b_blue.gif";
}
function mouseOut()
{
document.getElementById("b1").src ="b_pink.gif";
}
</script>

The function mouseOver() causes the image to shift to "b_blue.gif".

The function mouseOut() causes the image to shift to "b_pink.gif".

The Entire Code
	Example
<html>
<head>
<script type="text/javascript">
function mouseOver()
{
document.getElementById("b1").src ="b_blue.gif";
}
function mouseOut()
{
document.getElementById("b1").src ="b_pink.gif";
}
</script>
</head>

<body>

<img border="0" alt="Visit W3Schools!" src="b_pink.gif" id="b1"
onmouseover="mouseOver()" onmouseout="mouseOut()" />
</body>

HTML Image Maps
From our HTML tutorial we have learned that an image-map is an image with clickable regions. Normally, each region has an associated hyperlink. Clicking on one of the regions takes you to the associated link. Look at our simple HTML image-map.

Adding some JavaScript
We can add events (that can call a JavaScript) to the <area> tags inside the image map. The <area> tag supports the onClick, onDblClick, onMouseDown, onMouseUp, onMouseOver, onMouseMove, onMouseOut, onKeyPress, onKeyDown, onKeyUp, onFocus, and onBlur events.

Here's the HTML image-map example, with some JavaScript added:

	Example
<html>
<head>
<script type="text/javascript">
function writeText(txt)
{
document.getElementById("desc").innerHTML=txt;
}
</script>
</head>

<body>
<img src="planets.gif" width="145" height="126"
alt="Planets" usemap="#planetmap" />

<map name="planetmap">
<area shape ="rect" coords ="0,0,82,126"
onMouseOver="writeText('The Sun and the gas giant planets like Jupiter
are by far the largest objects in our Solar System.')"
href ="sun.htm" target ="_blank" alt="Sun" />

<area shape ="circle" coords ="90,58,3"
onMouseOver="writeText('The planet Mercury is very difficult to study
from the Earth because it is always so close to the Sun.')"
href ="mercur.htm" target ="_blank" alt="Mercury" />

<area shape ="circle" coords ="124,58,8"
onMouseOver="writeText('Until the 1960s, Venus was often considered a
twin sister to the Earth because Venus is the nearest planet to us, and
because the two planets seem to share many characteristics.')"
href ="venus.htm" target ="_blank" alt="Venus" />
</map>

<p id="desc"></p>

JavaScript Timing Events
With JavaScript, it is possible to execute some code after a specified time-interval. This is called timing events.

It's very easy to time events in JavaScript. The two key methods that are used are:

· setTimeout() - executes a code some time in the future

· clearTimeout() - cancels the setTimeout()

Note: The setTimeout() and clearTimeout() are both methods of the HTML DOM Window object.

The setTimeout() Method
Syntax
	var t=setTimeout("javascript statement",milliseconds);

The setTimeout() method returns a value. In the syntax defined above, the value is stored in a variable called t. If you want to cancel the setTimeout() function, you can refer to it using the variable name.

The first parameter of setTimeout() can be a string of executable code, or a call to a function.

The second parameter indicates how many milliseconds from now you want to execute the first parameter.

Note: There are 1000 milliseconds in one second.

Example
When the button is clicked in the example below, an alert box will be displayed after 3 seconds.

	Example
<html>
<head>
<script type="text/javascript">
function timeMsg()
{
var t=setTimeout("alertMsg()",3000);
}
function alertMsg()
{
alert("Hello");
}
</script>
</head>

<body>
<form>
<input type="button" value="Display alert box in 3 seconds"
onclick="timeMsg()" />
</form>
</body>
</html>

To get a timer to work in an infinite loop, we must write a function that calls itself.

In the example below, when a button is clicked, the input field will start to count (for ever), starting at 0.

Notice that we also have a function that checks if the timer is already running, to avoid creating additional timers, if the button is pressed more than once:

	Example
<html>
<head>
<script type="text/javascript">
var c=0;
var t;
var timer_is_on=0;

function timedCount()
{
document.getElementById('txt').value=c;
c=c+1;
t=setTimeout("timedCount()",1000);
}

function doTimer()
{
if (!timer_is_on)
 {
 timer_is_on=1;
 timedCount();
 }
}
</script>
</head>

<body>
<form>
<input type="button" value="Start count!" onclick="doTimer()">
<input type="text" id="txt" />
</form>
</body>
</html>

The clearTimeout() Method
Syntax
	clearTimeout(setTimeout_variable)

Example
The example below is the same as the "Infinite Loop" example above. The only difference is that we have now added a "Stop Count!" button that stops the timer:

	Example
<html>
<head>
<script type="text/javascript">
var c=0;
var t;
var timer_is_on=0;

function timedCount()
{
document.getElementById('txt').value=c;
c=c+1;
t=setTimeout("timedCount()",1000);
}

function doTimer()
{
if (!timer_is_on)
 {
 timer_is_on=1;
 timedCount();
 }
}

function stopCount()
{
clearTimeout(t);
timer_is_on=0;
}
</script>
</head>

<body>
<form>
<input type="button" value="Start count!" onclick="doTimer()">
<input type="text" id="txt">
<input type="button" value="Stop count!" onclick="stopCount()">
</form>
</body>
</html>

JavaScript Objects
Earlier in this tutorial we have seen that JavaScript has several built-in objects, like String, Date, Array, and more. In addition to these built-in objects, you can also create your own.

An object is just a special kind of data, with a collection of properties and methods.

Let's illustrate with an example: A person is an object. Properties are the values associated with the object. The persons' properties include name, height, weight, age, skin tone, eye color, etc. All persons have these properties, but the values of those properties will differ from person to person. Objects also have methods. Methods are the actions that can be performed on objects. The persons' methods could be eat(), sleep(), work(), play(), etc.

Properties
The syntax for accessing a property of an object is:

	objName.propName

You can add properties to an object by simply giving it a value. Assume that the personObj already exists - you can give it properties named firstname, lastname, age, and eyecolor as follows:

	personObj.firstname="John";
personObj.lastname="Doe";
personObj.age=30;
personObj.eyecolor="blue";

document.write(personObj.firstname);

The code above will generate the following output:

	John

Methods
An object can also contain methods.

You can call a method with the following syntax:

	objName.methodName()

Note: Parameters required for the method can be passed between the parentheses.

To call a method called sleep() for the personObj:

	personObj.sleep();

Creating Your Own Objects
There are different ways to create a new object:

1. Create a direct instance of an object
The following code creates an instance of an object and adds four properties to it:

	personObj=new Object();
personObj.firstname="John";
personObj.lastname="Doe";
personObj.age=50;
personObj.eyecolor="blue";

Adding a method to the personObj is also simple. The following code adds a method called eat() to the personObj:

	personObj.eat=eat;

2. Create an object constructor
Create a function that construct objects:

	function person(firstname,lastname,age,eyecolor)
{
this.firstname=firstname;
this.lastname=lastname;
this.age=age;
this.eyecolor=eyecolor;
}

Inside the function you need to assign things to this.propertyName. The reason for all the "this" stuff is that you're going to have more than one person at a time (which person you're dealing with must be clear). That's what "this" is: the instance of the object at hand.

Once you have the object constructor, you can create new instances of the object, like this:

	var myFather=new person("John","Doe",50,"blue");
var myMother=new person("Sally","Rally",48,"green");

You can also add some methods to the person object. This is also done inside the function:

	function person(firstname,lastname,age,eyecolor)
{
this.firstname=firstname;
this.lastname=lastname;
this.age=age;
this.eyecolor=eyecolor;

this.newlastname=newlastname;
}

Note that methods are just functions attached to objects. Then we will have to write the newlastname() function:

	function newlastname(new_lastname)
{
this.lastname=new_lastname;
}

The newlastname() function defines the person's new last name and assigns that to the person. JavaScript knows which person you're talking about by using "this.". So, now you can write: myMother.newlastname("Doe").

